Extensions 1→N→G→Q→1 with N=C32 and Q=C2×Dic5

Direct product G=N×Q with N=C32 and Q=C2×Dic5
dρLabelID
C3×C6×Dic5360C3xC6xDic5360,93

Semidirect products G=N:Q with N=C32 and Q=C2×Dic5
extensionφ:Q→Aut NdρLabelID
C321(C2×Dic5) = C2×C32⋊Dic5φ: C2×Dic5/C10C4 ⊆ Aut C32604C3^2:1(C2xDic5)360,149
C322(C2×Dic5) = S3×Dic15φ: C2×Dic5/C10C22 ⊆ Aut C321204-C3^2:2(C2xDic5)360,78
C323(C2×Dic5) = Dic15⋊S3φ: C2×Dic5/C10C22 ⊆ Aut C32604C3^2:3(C2xDic5)360,85
C324(C2×Dic5) = C3×S3×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C321204C3^2:4(C2xDic5)360,59
C325(C2×Dic5) = C3⋊S3×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C32180C3^2:5(C2xDic5)360,66
C326(C2×Dic5) = C6×Dic15φ: C2×Dic5/C2×C10C2 ⊆ Aut C32120C3^2:6(C2xDic5)360,103
C327(C2×Dic5) = C2×C3⋊Dic15φ: C2×Dic5/C2×C10C2 ⊆ Aut C32360C3^2:7(C2xDic5)360,113


׿
×
𝔽